Section 8.1
 Solutions and Hints

by Brent M. Dingle

for the book:

Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

24. Find all solutions to the system of equations:

Eq 1. $x+\sqrt{y}=0 \quad \leftarrow$ this is ugly so multiply both sides by $x-\sqrt{y}$
Eq 2. $y^{2}-4 x^{2}=12$
Eq 1. $x^{2}-y=0 \quad$ Now we can start solving the system
Eq 2. $y^{2}-4 x^{2}=12$

$$
\begin{array}{ll}
\begin{array}{l}
4 *\left(x^{2}-y=0\right) \\
+y^{2}-4 x^{2}=12
\end{array} & \text { Multiply eq. } 1 \text { by } 4 \text { and add it to eq. } 2 \\
------------12 & \text { Now solve for } y \\
y^{2}-4 y=12 & \\
y^{2}-4 y-12=0 & \text { Factor } \\
(y-6)(y+2)=0 & \\
y=6 \text { or }-2 & \text { put this into } x+\sqrt{y}=0 \text { gives } x=-\sqrt{6} \text { or } x=-\sqrt{-2}=-i \sqrt{2}
\end{array}
$$

So the solutions are:

$$
\begin{gathered}
\mathrm{x}=-\sqrt{6} \text { and } \mathrm{y}=6 \\
\mathrm{x}=-i \sqrt{2} \text { and } \mathrm{y}=-2
\end{gathered}
$$

42. A right triangle has an area of $84 \mathbf{~ s q}$. ft and a hypotenuse of length $\mathbf{2 5} \mathbf{f t}$. What are the lengths of its other two sides?

For this we will use 2 equations:
Area of a triangle, $A=1 / 2 a^{*} b$
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
For this problem $A=84$ feet and $c=25$ feet. We need to find a and b .
Equation 1: $1 / 2^{*} a^{*} b=84$
Equation 2: $a^{2}+b^{2}=625$

$$
\left(25^{2}=625\right)
$$

Using equation 1 , we will solve for b in terms of a :
$1 / 2 * a * b=84 \rightarrow \mathrm{ab}=168 \rightarrow b=168 / a$
We now put 84/a in for b into equation 2 :
$a^{2}+b^{2}=625 \rightarrow a^{2}+(168 / a)^{2}=625$
$\rightarrow a^{2}+\frac{168^{2}}{a^{2}}=625, \quad$ Multiply both sides by a^{2}
$\rightarrow a^{4}+28224=625 a^{2}, \quad$ Subtract everything to the left side
$\rightarrow a^{4}-625 a^{2}+28224=0$, Factor
$\rightarrow\left(a^{2}-576\right)\left(a^{2}-49\right)=0$
Which means $a^{2}=576$ or $a^{2}=49$, notice we will only take the positive results.

$$
a=\sqrt{576}=24 \quad \text { or } \quad a=\sqrt{49}=7
$$

And using $b=168 / a$ we then get

$$
b=168 / 24=7 \quad \text { or } b=168 / 7=24
$$

So the possible solutions are:

$$
\begin{gathered}
a=24 \text { and } b=7 \\
\text { or } \\
a=7 \text { and } b=24
\end{gathered}
$$

