Section 8.1 Solutions and Hints

by Brent M. Dingle

for the book:

<u>Precalculus, Mathematics for Calculus 4th Edition</u> by James Stewart, Lothar Redlin and Saleem Watson.

24. Find all solutions to the system of equations:

Eq 1. Eq 2. <u>:</u>	$x + \sqrt{y} = 0$ $y^2 - 4x^2 = 12$	$\leftarrow \text{ this is ugly so multiply both sides by } x - \sqrt{y}$
Eq 1. : Eq 2. :	$x^{2} - y = 0$ Now $y^{2} - 4x^{2} = 12$	ve can start solving the system
	$4^*(x^2 - y = 0) + y^2 - 4x^2 = 12$	Multiply eq.1 by 4 and add it to eq. 2
	$y^2 - 4y = 12$	Now solve for y
	$y^{2} - 4y - 12 = 0$ (y - 6)(y + 2) = 0	Factor
	y = 6 or -2 put this is	nto $x + \sqrt{y} = 0$ gives $x = -\sqrt{6}$ or $x = -\sqrt{-2} = -i\sqrt{2}$

So the solutions are:

 $x = -\sqrt{6}$ and y = 6 $x = -i\sqrt{2}$ and y = -2

42. A right triangle has an area of 84 sq. ft and a hypotenuse of length 25 ft. What are the lengths of its other two sides?

For this we will use 2 equations:

Area of a triangle, $A = \frac{1}{2} a^* b$ Pythagorean Theorem: $a^2 + b^2 = c^2$

For this problem A = 84 feet and c = 25 feet. We need to find a and b.

Equation 1: $\frac{1}{2}a^*b = 84$ Equation 2: $a^2 + b^2 = 625$ (25² = 625)

Using equation 1, we will solve for b in terms of a: $\frac{1}{2}a^*b = 84 \rightarrow ab = 168 \rightarrow b = 168/a$

We now put 84/a in for b into equation 2: $a^2 + b^2 = 625 \rightarrow a^2 + (168/a)^2 = 625$ $\rightarrow a^2 + \frac{168^2}{a^2} = 625$, Multiply both sides by a^2 $\rightarrow a^4 + 28224 = 625a^2$, Subtract everything to the left side $\rightarrow a^4 - 625a^2 + 28224 = 0$, Factor $\rightarrow (a^2 - 576)(a^2 - 49) = 0$

Which means $a^2 = 576$ or $a^2 = 49$, notice we will only take the positive results. $a = \sqrt{576} = 24$ or $a = \sqrt{49} = 7$

And using b = 168/a we then get b = 168/24 = 7 or b = 168/7 = 24

So the possible solutions are:

a = 24 and $b = 7$
or
a = 7 and $b = 24$