Section 8.8 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

40. A man and his daughter manufacture unfinished tables and chairs. Each table requires 3 hours of sawing and 1 hour of assembly. Each chair requires 2 hours of sawing and 2 hours of assembly. The two of them can put in up to 12 hours of sawing and 8 hours of assembly work per day. Find a system of inequalities that describes all possible combinations of tables and chairs that they can make per day. Graph the solution set.

	Hours Sawing	Hours Assembly	Total
Table	3	1	4
Chair	2	2	4
Maximum Hours	≤ 12	≤ 8	

Let $t=$ number tables made per day
Let $c=$ number of chairs made per day
Then $3 t+2 c=$ number of hours sawing per day ≤ 12
and $\quad 1 t+2 c=$ number of hours spent in assembly per day ≤ 8
So the system of inequalities is:

$$
\begin{aligned}
& 3 t+2 c \leq 12 \\
& t+2 c \leq 8
\end{aligned}
$$

The graphing is left up to you and your calculator.

