Section 9.1
 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.
48. A reflector for a satellite dish is parabolic in cross section, with the receiver at the focus F. The reflector is 1 foot deep and 20 feet wide from rim to rim. How far is the receiver from the vertex of the parabolic reflector.

Notice we align the vertex on the coordinate $(0,0)$. This allows us to say the parabolic arc is vertical and apply the equation $x^{2}=4 p y$.
Thus
the vertex is at: $(0,0)$
the focus is at: $(0, p)$
directrix is at: $y=-p$
Thus if we find p then we will have the distance the focus is from the vertex.
Notice as we have set things up the point $(10,1)$ is on the parabola so:

$$
\begin{aligned}
10^{2}=4 * \mathrm{p} * 1 & \rightarrow 100=4 \mathrm{p} \\
& \rightarrow 25=\mathrm{p}
\end{aligned}
$$

So the answer is:
The receiver is $\mathbf{2 5} \mathbf{f t}$ from the vertex of the refletor.

