Section 9.3
 Solutions and Hints

by Brent M. Dingle

for the book:
Precalculus, Mathematics for Calculus $4^{\text {th }}$ Edition by James Stewart, Lothar Redlin and Saleem Watson.

32. Find an equation for the hyperbola that satisfies the conditions:
 Vertices ($0,-6$) and (0,6)
 Asymptotes $y=-(1 / 3) x$ and $y=(1 / 3) x$

With vertices on $(0,-6)$ and $(0,6)$ we know the transverse axis is vertical, or rather the curves open up and down. So the general form of the hyperbola is:

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1, \quad \text { with } a>0 \text { and } b>0
$$

Knowing the vertices are at $(0,-6)$ and $(0,6)$ also tells us $a=6$.
And by definition the asymptotes occur at $\mathrm{y}=-(a / b)^{*} x$ and $\mathrm{y}=(a / b)^{*} x$.
And we were given they occur at $\mathrm{y}=-(1 / 3)^{*} x$ and $(1 / 3)^{*} x$. Looking at the positive, if we put $a=6$ into the general equation we get $y=(6 / b)^{*} x$.
Setting this equal to the positive given we get:

$$
\begin{aligned}
(6 / b)^{*} x=(1 / 3) * x & \rightarrow(6 / b)=(1 / 3) \\
& \rightarrow 6=(1 / 3) * b \\
& \rightarrow 18=b
\end{aligned}
$$

So putting a and b into the general form we arrive at the answer:

The equation for the hyperbola is: $\frac{y^{2}}{36}-\frac{x^{2}}{324}=1$

