Fall 1998 Math 151 Common Exam 1

c 1998, Art Belmonte, Math 151, Fri, 02/Oct/98

Multiple Choice Answers

A1-b, B10-b

- $>\operatorname{Limit}\left(1 /(x-1)-2 /\left(x^{\wedge} 2-1\right), x=1\right) ;$ answer:=value (\%);
$\lim _{x \rightarrow 1} \frac{1}{x-1}-2 \frac{1}{x^{2}-1}$
answer $:=\frac{1}{2}$
A2-c, B5-c
> Limit ((sqrt ($\left.\left.\left.\mathrm{x}^{\wedge} 2+8\right)-3\right) /(\mathrm{x}-1), \mathrm{x}=1\right)$; answer:=value (\%);
$\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+8}-3}{x-1}$
answer $:=\frac{1}{3}$

A3-b, B3-b

$>y=\operatorname{Limit}\left(\left(x-\operatorname{sqrt}\left(x^{\wedge} 2+4 * x-1\right)\right) / 2, x=i n f i n i t y\right) ; ~ h o r i z o n t a l _a s y m p t o t e:=v a l u e(\%) ;$ $y=\lim _{x \rightarrow \infty} \frac{1}{2} x-\frac{1}{2} \sqrt{x^{2}+4 x-1}$
horizontal_asymptote $:=y=-1$
As we see, there is no horizontal asymptote in the other direction.

$$
>\operatorname{Limit}\left(\left(x-s q r t\left(x^{\wedge} 2+4 * x-1\right)\right) / 2, x=-i n f i n i t y\right) ; \text { only_one:=value(\%); }
$$

$$
\lim _{x \rightarrow(-\infty)} \frac{1}{2} x-\frac{1}{2} \sqrt{x^{2}+4 x-1}
$$

only_one $:=-\infty$

A4-d, B8-d

From Figure A (drawn on the exam), we have that $\lim \mathrm{f}(x)=1=\mathrm{f}(1)$. Therefore, f is continuous from the right at $x=1$.

$$
x \rightarrow 1+
$$

A5-e, B7-e

From Figure A (drawn on the exam), we see that none of the first four statements (a)-(d) is true. Hence the correct choice is (e). Here are details.

- Statement (a) is false since f has a (removable) discontinuity at $x=0$. Since differentiability at at point implies continuity thereat, f cannot be differentiable at $x=0$.
- Statement (b) is false since f has a (jump) discontinuity at $x=1$. Since differentiability at at point implies continuity thereat, f cannot be differentiable at $x=1$.
- Statement (c) is false since the graph of f is "sharp/pointed/kinked" at $x=2$. The geometric connotation of differentiability is that of "smoothness." The slope of the tangent line (from Figure A) cannot simultaneously be both positive and negative.
- Statement (d) is false since f has an (infinite) discontinuity at $x=4$. Since differentiability at at point implies continuity thereat, f cannot be differentiable at $x=4$.

A6-a, B2-a

```
> unassign('s', 't'); \(a:=[2,-1] ; \mathrm{b}:=[3,2] ; \mathrm{c}:=[5,3]\);
    eq:=equate (c, s*a + t*b); solve(eq, \{s,t\}); assign(\%);
    t_over_s:=t/s;
\(a:=[2,-1]\)
\(b:=[3,2]\)
\(c:=[5,3]\)
\(e q:=\{5=2 s+3 t, 3=-s+2 t\}\)
\(\left\{t=\frac{11}{7}, s=\frac{1}{7}\right\}\)
t_over_s := 11
```


A7-d, B11-d

The vector sum of \mathbf{b} and \mathbf{c} is \mathbf{a}, as the head-to-tail diagram indicates. Now subtract \mathbf{b} from each side of this vector equation.

```
> unassign('a', 'b', 'c');
    b + c = a; map(sort, op(solve(%, {c})));
b+c=a
c=a-b
```


A8-e, B4-e

[> $x^{\wedge} 5 /\left(x^{\wedge} 3-2\right)$; derivative:=simplify $(\operatorname{diff}(\%, x))$; equivalently:=expand(numer(\%)) / denom(\%);
$\frac{x^{5}}{x^{3}-2}$
derivative $:=2 \frac{x^{4}\left(x^{3}-5\right)}{\left(x^{3}-2\right)^{2}}$
equivalently $:=\frac{2 x^{7}-10 x^{4}}{\left(x^{3}-2\right)^{2}}$

A9-e, B1-e

The slope m of the tangent line at $x=1$ is the derivative $f^{\prime}(1)$. Then use the point-slope formula.

$$
\left[\begin{array}{l}
>\mathrm{f}:=\mathrm{x}->\mathrm{x}^{\wedge} 3-\mathrm{x} ; \mathrm{m}:=\mathrm{D}(\mathrm{f})(1) ; \\
\quad \text { point_slope_formula }:=\mathrm{y}-\mathrm{f}(1)=\mathrm{m}(\mathrm{x}-1) ; \\
f:=x \rightarrow x^{3}-x \\
m:=2 \\
\text { point_slope_formula }:=y=2 x-2
\end{array}\right.
$$

A10-b, B6-b

Here is the distance from the point to the line computed via vectors. We make use of the vec_calc routines dot and len, which respectively compute the length of a vector and the dot product between two vectors. (We have autoloaded the vec_calc
package via a Unix .mapleinit file in our home directories.)

$$
\left[\begin{array}{rl}
> & \text { unassign ('t'); P:=[-2,3]; L:=[t->4*t, t->3*t }+5 / 4] ; \\
\quad \mathrm{a}:=\mathrm{D}(\mathrm{~L}) ; \mathrm{b}:=\mathrm{P}-\mathrm{L}(1 / 4) ; \\
& \quad \text { istance }:=\operatorname{len}(\mathrm{b}-\operatorname{dot}(\mathrm{a}, \mathrm{~b}) / \operatorname{len}(\mathrm{a}) * \mathrm{a} / \operatorname{len}(\mathrm{a})) ; \\
P & :=[-2,3] \\
L & :=\left[t \rightarrow 4 t, t \rightarrow 3 t+\frac{5}{4}\right] \\
a & :=[4,3] \\
b:=[-3,1]
\end{array}\right.
$$

$$
\text { distance }:=\frac{13}{5}
$$

A11-c, B9-c

Parallel translate the vectors so that they emanate from the same starting point; i.e., put their tails together. The vector between their heads is their difference vector. Accordingly, since these three vectors are unit vectors, an equilateral triangle is formed with each side 1 unit long. With this crucial piece of geometry dispatched, position the starting point at the origin and rotate to taste. Then compute the needful: voila!

$$
\left[\begin{array}{l}
>\mathrm{a}:=[1,0] ; \mathrm{b}:=[1 / 2, \text { sqrt (3) /2]; length_of_vector_sum:=len }(\mathrm{a}+\mathrm{b}) ; \\
a:=[1,0] \\
b:=\left[\frac{1}{2}, \frac{1}{2} \sqrt{3}\right] \\
\text { length_of_vector_sum }:=\sqrt{3}
\end{array}\right.
$$

Work-Out Solutions

A12/B17

The continuous polynomial function $\mathrm{f}(x)=x^{4}+x^{3}+x-1$ has values $\mathrm{f}(0)=-1<0$ and $\mathrm{f}(1)=2>0$, which are of opposite sign. Hence $\mathrm{f}(x)=0$ for some x in the interval $[0,1]$ by the Intermediate Value Theorem.

A13/B15

With the positive x-axis pointing east and the positive y-axis pointing north, we have $\mathbf{v}_{P}=\left\langle 900 \cos \left(60^{\circ}\right), 900 \sin \left(60^{\circ}\right)\right\rangle=\langle$ $450,450 \sqrt{3}\rangle$ and $\mathbf{v}_{\mathrm{W}}=\langle 100,0\rangle$. Thus $\mathbf{v}_{G}=\mathbf{v}_{P}+\mathbf{v}_{\mathrm{W}}=\langle 550,450 \sqrt{3}\rangle$. Therefore, $\left\|\mathbf{v}_{G}\right\|=\sqrt{550^{2}+(450 \sqrt{3})^{2}}=953.94$ $(\mathrm{km} / \mathrm{hr})$ and $\theta=\arctan \left(\frac{450 \sqrt{3}}{550}\right)=54.8^{\circ}=0.96$ radians, counterclockwise from east. That is, $\mathbf{v}_{G}=953.94 \mathrm{~km} / \mathrm{hr}$ at a bearing of 35.2°. [Non-decimal (symbolic) answers are fine, although most folks will probably have decimal answers, which are more appropriate for engineering.]

A14/B18

$f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{\mathrm{f}(x)-\mathrm{f}(1)}{x-1}=\lim _{x \rightarrow 1} \frac{3 x^{2}-x+7-9}{x-1}=\lim _{x \rightarrow 1} \frac{3 x^{2}-x-2}{x-1}=\lim _{x \rightarrow 1} \frac{(3 x+2)(x-1)}{x-1}=\lim _{x \rightarrow 1}(3 x+2)=5$.

A15/B12

The velocity \mathbf{v} is the derivative of the position function $\mathbf{r}(t)=\langle 3000 t, 100 t(20-t)\rangle$. Hence $\mathbf{v}=\mathbf{r}^{\prime}(t)=\langle 3000,2000-200 t\rangle$ and thus the velocity at time $t=8$ is $\mathbf{v}(8)=\langle 3000,400\rangle$, a vector.
The speed is the magnitude (length) of the velocity \mathbf{v}. Accordingly, at time $t=15$ the speed is $\|\mathbf{v}(15)\|=$ $\sqrt{3000^{2}+(-1000)^{2}}=\sqrt{10 \times 10^{6}}=1000 \sqrt{10}=3162.28$, a scalar.

A16/B13

With $\mathbf{a}=\left\langle x, 2>\right.$ and $\mathbf{b}=<2 x,-4>$, we have that $\mathbf{a} * \mathbf{b}<0$ implies $2 x^{2}-8<0$, whence $x^{2}<4$ or $-2<x<2$.

A17/B16

With $\mathrm{f}(x)=\left\{\begin{array}{cc}x^{2}-c & x<2 \\ 3 c & x=2, \\ x+c & 2<x\end{array}\right.$ we have $\lim _{x \rightarrow 2-} \mathrm{f}(x)=4-c$, whereas $\lim _{x \rightarrow 2+} \mathrm{f}(x)=2+c$. Matching these one-sided limits yields $4-c=2+c$, whence $c=1$. Thus we conjecture that $\mathrm{f}(x)=\left\{\begin{array}{cc}x^{2}-1 & x<2 \\ 3 & x=2 \\ x+1 & 2<x\end{array}\right.$ is continuous at $x=2$. Indeed:

CONDITIONS:

1. The function f is defined at $x=2$: $\mathrm{f}(2)=3$.
2. The limit $\lim \mathrm{f}(x)=3$ exists.
$x \rightarrow 2$
3. The limiting value agrees with the function value: $\lim \mathrm{f}(x)=\mathrm{f}(2)$.

CONCLUSION:

Therefore, f is continuous at $x=2$.

A18/B14

(a)

The spud hits the ground when $\mathrm{h}(t)=0$ for a positive value of t. (It can't hit the ground before the spud gun is fired!)
[$>\mathrm{h}:=\mathrm{t}->200+25 * \mathrm{t}-4.9$ * $^{\wedge} 2$;
sol:=solve(h(t)=0, t); time_of_impact:=sol[2];
$h:=t \rightarrow 200+25 t-4.9 t^{2}$
sol $:=-4.328226037,9.430266853$
time_of_impact $:=9.430266853$
[The spud hits the ground after 9.43 seconds.
(b)

Its speed at impact is the magnitude (absolute value) of the signed velocity \mathbf{v} thereat.
[> v:=D(h); abs(v(time_of_impact));
$v:=t \rightarrow 25-9.8 t$
67.41661516
[The speed of the potato at impact is 67.4 meters/second.
(c)

The total distance traveled by the spud is the magnitude of the distance traveled going up plus the magitude of the distance traveled going down. At its maximum height, the velocity of the spud is zero.
> time_at_max_height:=solve(v(t)=0, t);
total_distance: $=2$ (h(time_at_max_height) - 200) + 200;
time_at_max_height $:=2.551020408$
total_distance $:=263.7755102$
[The total distance the spud traveled is 263.8 meters.

