PART 1: MULTIPLE-CHOICE PROBLEMS

Each problem is worth 4 points: NO partial credit will be given. Calculators may NOT be used on this part. ScanTron forms will be collected after 1 hour.

1. Find the derivative of $g(x)=2+3 x+4 x^{2}+x^{3}$.
(a) $2 x+\frac{3}{2} x^{2}+\frac{4}{3} x^{3}+\frac{1}{4} x^{4}$
(b) $3+8 x+3 x^{2}$
(c) $5+8 x+3 x^{2}$
(d) $3+7 x^{2}$
(e) $2+8 x+3 x^{2}$
2. If $\lim _{x \rightarrow a} f(x)=9$ and $\lim _{x \rightarrow a} g(x)=2$, then $\lim _{x \rightarrow a}[4 \sqrt{f(x)}+5 g(x)]=$
(a) $45+4 \sqrt{2}$
(b) 57
(c) 22
(d) 1
(e) Can't be determined unless a is known.
3. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}+5}{2 x^{3}+7 x}$.
(a) 1
(b) ∞
(c) 0
(d) $\frac{2}{3}$
(e) $\frac{3}{2}$
4. Find the equation of the tangent line to the curve $y=f(x)=x^{4}+2 x+1$ at the point $x=1$.
(a) $y-4=6(x+1)$
(b) $y-6=4(x-1)$
(c) $y-4=-6(x-1)$
(d) $y-4=6(x-1)$
(e) $y-6=6(x-1)$
5. A line is given by the parametric equations $x=2+3 t, y=4+12 t$. Find the slope of this line.
(a) $-\frac{1}{4}$
(b) $\frac{1}{4}$
(c) -4
(d) 4
(e) 36
6. Consider the function $f(x)=\left\{\begin{array}{ll}3 x-1 & \text { if } x \leq 2 \\ x^{2}+2 & \text { if } x>2\end{array}\right.$. Which statement is true?
(a) $f(2)=6$.
(b) $f(2)$ is not defined.
(c) $f(x)$ is continuous at $x=2$.
(d) $\lim _{x \rightarrow 2^{-}} f(x)=6$.
(e) $\lim _{x \rightarrow 2^{+}} f(x)=6$.
7. The displacement of a particle moving in a straight line is given by $s=\frac{t^{4}}{4}-8 t+3$. When is the velocity of the particle equal to zero?
(a) $t=0$
(b) $t=1$
(c) $t=2$
(d) $t=4$
(e) $t=8$
8. If $h(x)=f(x) g(x)$ and $f(3)=4, g(3)=2, f^{\prime}(3)=-6$ and $g^{\prime}(3)=5$, then $h^{\prime}(3)=$
(a) -30
(b) 8
(c) 4
(d) -14
(e) -4
9. Only one of the following intervals contains a solution of the equation $2 x^{3}+x^{2}+2=0$. Which one?
(a) $(-2,-1)$
(b) $(-3,-2)$
(c) $(-51,-50)$
(d) $(0,1)$
(e) $(3,8)$
10. Evaluate $\lim _{t \rightarrow 2} \frac{2 t^{2}+6 t}{5 t-5}$.
(a) $\frac{14}{5}$
(b) $\frac{2}{5}$
(c) $\frac{6}{5}$
(d) 4
(e) 1
11. Find the value of x that makes the vectors $\langle 1, x\rangle$ and $\langle 3-4 x, 5\rangle$ orthogonal.
(a) $x=-3$
(b) $x=-1$
(c) $x=0$
(d) $x=1$
(e) $x=3$

PART 2: WORK-OUT PROBLEMS

Each problem is worth 8 points; partial credit is possible. Calculators are permitted ONLY AFTER the ScanTrons are collected. SHOW ALL WORK! If you use a calculator, explain how.
12. Find the derivative of $f(x)=\frac{1}{x}$ using only the definition of the derivative as a limit.
13. Find the vector projection of $5 \mathbf{i}+12 \mathbf{j}$ onto $3 \mathbf{i}-4 \mathbf{j}$.
14. Differentiate $f(x)=\frac{x^{2}-1}{2 x^{2}+1}$.
15. Differentiate $g(x)=\left(1+x+2 x^{2}\right)\left(2+x^{2}+x^{3}\right)$.
16. Evaluate $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+6 x}\right)$.
17. Find the value of the constant c that makes the function $f(x)= \begin{cases}c x+1, & \text { if } x \leq 2 \\ \frac{1}{4} c x^{2}-2 & \text { if } x>2\end{cases}$ continuous on $(-\infty, \infty)$. Clearly EXPLAIN your answer!
18. A triangle has vertices at the points $P(0,1), Q(2,1)$ and $R(3,3)$. Using vector methods: (a) Find the distances from R to P and R to Q.
(b) Find the cosine of the angle of the triangle at the vertex R.

