PART 1: MULTIPLE-CHOICE PROBLEMS

Each problem is worth 4 points: NO partial credit will be given. Calculators may NOT be used on this part. ScanTron forms will be collected after 1 hour.

1. If $g(x)=\sin 2 x$, then $g^{(5)}(x)=$
(a) $16 \cos 2 x$
(b) $32 \cos 2 x$
(c) $32 \sin 2 x$
(d) $-32 \cos 2 x$
(e) $\cos 32 x$
2. The function $f(x)=3 x+\sin x$ is one-to-one. If g is the inverse function of f, then $g^{\prime}(3 \pi)=$
(a) $\frac{1}{2 \pi}$
(b) $\frac{1}{\pi}$
(c) 1
(d) $\frac{1}{2}$
(e) Can't be determined from the information given.
3. Simplify $\frac{e^{-x}\left(e^{2 x}+4 e^{4 x}\right)}{\left(e^{2 x}\right)^{2}}$
(a) $e^{-3 x}+4$
(b) $e^{5 x}+4 e^{7 x}$
(c) $e^{-3 x}+e^{3 x}$
(d) $4 e^{3 x}+e^{x}$
(e) $e^{-3 x}+4 e^{-x}$
4. $\lim _{\theta \rightarrow 0} \frac{\sin 9 \theta}{4 \theta}=$
(a) $\frac{9}{4}$
(b) $\frac{4}{9}$
(c) ∞
(d) 1
(e) 0
5. If $f(x)=2 \sqrt{x+\frac{1}{x}}$, then $f^{\prime}(x)=$
(a) $\frac{1+x^{-2}}{\left(x+x^{-1}\right)^{1 / 2}}$
(b) $\left(1-x^{-2}\right)^{1 / 2}$
(c) $\frac{1-x^{-2}}{\left(x+x^{-1}\right)^{1 / 2}}$
(d) $\frac{1+x^{2}}{\left(x+x^{-1}\right)^{1 / 2}}$
(e) $\frac{1-x^{-2}}{\left(x-x^{-1}\right)^{1 / 2}}$
6. If $x y=8$ and $d x / d t=-2$, find $d y / d t$ when $x=4$.
(a) -1
(b) 1
(c) 0
(d) 2
(e) -2
7. Find the derivative of $f(x)=\tan ^{2}\left(x^{3}+x\right)$
(a) $2\left(3 x^{2}+1\right) \tan \left(x^{3}+x\right) \sec ^{2}\left(x^{3}+x\right)$
(b) $\sec ^{2}\left(x^{3}+x\right)$
(c) $2 \tan \left(x^{3}+x\right) \sec \left(x^{3}+x\right)$
(d) $\tan ^{2}\left(3 x^{2}+1\right)$
(e) $2\left(3 x^{2}+1\right) \tan ^{2}\left(x^{3}+x\right) \sec ^{2}\left(x^{3}+x\right)$
8. $\lim _{x \rightarrow \infty} \frac{2 e^{4 x}-7 e^{-x}}{e^{4 x}+1000 e^{x}+10}=$
(a) 1
(b) $\frac{1}{2}$
(c) 2
(d) -1
(e) 0
9. The solution of $\ln (x+4)-\ln x=2 \ln 2$ is
(a) $\frac{4}{3}$
(b) 1
(c) $\frac{2}{3}$
(d) $\frac{3}{2}$
(e) There is no solution.
10. The inverse function of $f(x)=\frac{2+5 x}{3 x+7}$ is
(a) $f^{-1}(x)=\frac{7 x-2}{5-3 x}$
(b) $f^{-1}(x)=\frac{3 x-7}{2-5 x}$
(c) $f^{-1}(x)=x$
(d) $f^{-1}(x)=\frac{3 x+7}{2+5 x}$
(e) $f^{-1}(x)=\frac{7 x+2}{5+3 x}$
11. A spherical snowball is melting in such a way that its volume is decreasing at a rate of $2 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the radius changing when the radius is 7 cm ?
(a) $-\frac{1}{7 \pi} \mathrm{~cm} / \mathrm{min}$
(b) $-\frac{1}{49 \pi} \mathrm{~cm} / \mathrm{min}$
(c) $\frac{1}{49 \pi} \mathrm{~cm} / \mathrm{min}$
(d) $-\frac{1}{196 \pi} \mathrm{~cm} / \mathrm{min}$
(e) $-\frac{1}{98 \pi} \mathrm{~cm} / \mathrm{min}$

PART 2: WORK-OUT PROBLEMS

Each problem is worth 8 points. Detailed analytic solutions must be provided. Partial credit is possible. Calculators are permitted ONLY AFTER the ScanTrons are collected.
12. Consider the function $g(x)=\sqrt[3]{1+x}$.
(a) Find the linear approximation of $g(x)$ for values of x near $a=7$.
(b) Use your answer above to approximate $\sqrt[3]{8.1}$
13. Find the slope of the tangent line to the curve with the equation $2 x^{3}-x^{2} y+y^{3}-1=0$ at the point $(2,-3)$.
14. Find the equation of the tangent line to the curve given by the parametric equations

$$
\begin{aligned}
& x=t \cos t \\
& y=t \sin t
\end{aligned}
$$

at the point on the curve where $t=\pi / 2$.
15. Find all values of the constant r for which the function $y=e^{r x}$ satisfies the differential equation $y^{\prime \prime}-y^{\prime}-2 y=0$.
16. Two cars are on roads that intersect at right angles, each car moving away from the intersection. At what rate is the distance between them increasing if car A is 4 miles from the intersection and going east at 60 miles per hour, while car B is 3 miles from the intersection and going north at 80 miles per hour?
17. Differentiate the following functions. Include at least one intermediate step.
(a) $f(x)=x e^{-\left(x^{2} / 4\right)}$
(b) $f(x)=x \cos \left(1 / x^{2}\right)$.
18. The vector function $\mathbf{r}(t)=\left\langle t^{2}, 16 t-4 t^{2}\right\rangle$ gives the position of a particle at time t. Find the time t when the velocity and acceleration of the particle are orthogonal.

