Fall 1998 Math 151 Common Exam 2

Multiple Choice Problems

1. $\lim _{x \rightarrow 0} \frac{2 x}{\sin (3 x)}=\frac{2}{3}$
2. $y=[2+\sec x]^{1 / 2}$ has derivative $y^{\prime}=\frac{1}{2}[2+\sec x]^{-1 / 2} \sec x \tan x$, so the slope of the graph at $(\pi / 3,2)$ is $y^{\prime}(\pi / 3)=\sqrt{3} / 2$.
3. $f(x)=e^{2 x}+2+e^{-2 x}$ and $f^{\prime}(x)=2\left(e^{2 x}-e^{-2 x}\right)$.
4. $y=x \sin x+\cos x$ has second derivative $y^{\prime \prime}=\cos x-x \sin x$
5. $A=\pi r^{2} \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}=2 \pi(10) 2=40 \pi \mathrm{ft} / \mathrm{sec}$
6. $f(x)=8(1+x)^{-1 / 2} \approx 8-4 x+3 x^{2}$
7. $x_{2}=x_{1}-\left(x_{1}^{3}-2 x_{1}+3\right) /\left(3 x_{1}^{2}-2\right)=-1$ since $x_{1}=1$
8. $2=\left(3 y^{2}-x\right) y^{\prime}-y \Rightarrow 2=11 y^{\prime}-2 \Rightarrow y^{\prime}=4 / 11$
9. $\lim _{x \rightarrow \infty} \frac{2 e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}=2$
10. $g^{\prime}(x)=1 / f^{\prime}(2)=1 / 4$
11. The solutions are $x=1 / 2$ and $x=4$; their product is 2 .

Workout Problems

12. The slope is $y^{\prime}(0)=e^{0} \cos 0-e^{0} \sin 0=1$. Using the point slope equation $y-y_{0}=m\left(x-x_{0}\right)$, the tangent line is $y-1=1(x-0)$ or $y=x+1$.
13. The given line has slope $1 / 2$ and "tangent parallel" means $\frac{d y}{d x}=1 / 2$. This gives the equation

$$
\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}=2 t /\left(3 t^{2}+1\right)=1 / 2 .
$$

Simplifying the last equality gives the quadratic

$$
\begin{aligned}
& 4 t=3 t^{2}+1, \quad \text { or } \\
& 0=3 t^{2}-4 t+1=(3 t-1)(t-1) .
\end{aligned}
$$

The solutions $t=1 / 3$ and $t=1$ lead to the points $(2,1)$ and $(10 / 27,1 / 9)$, respectively.
14. For any t velocity is $r^{\prime}(t)=(2 t-3) \bar{\imath}+t^{-2} \bar{\jmath}$ and acceleration is $r^{\prime \prime}(t)=2 \bar{\imath}-t^{-3} \bar{\jmath}$. Taking $t=2$,

$$
\begin{aligned}
& \text { acceleration }=2 \bar{\imath}-(1 / 4) \bar{\jmath} \text {, with } \\
& \text { magnitude }=\left[4+(1 / 4)^{2}\right]^{1 / 2}=\sqrt{4.0625} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

15. For a sketch see Example 2 on page 216 of the text. Let x be the distance in feet from the bottom of the ladder to the wall, and y be the height in feet of the ladder's top.

$$
\begin{aligned}
100 & =x^{2}+y^{2} \text { by Pythogoras' Theorem } \\
0 & =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& =2 x \frac{2 x}{d t}+2 \sqrt{100-x^{2}} \frac{d y}{d t}
\end{aligned}
$$

Since $\frac{d x}{d t}=2$ when $x=8$,

$$
0=2(8)(2)+2(6) \frac{d y}{d t} \text { or } \frac{d y}{d t}=-8 / 3 \mathrm{ft} / \mathrm{sec} .
$$

16. (a) $y=\ln (x+2) \Rightarrow e^{y}=x+2 \Rightarrow f^{-1}(y)=x=e^{y}-2$, or, after renaming the variable, $f^{-1}(x)=e^{x}-2$.
(b) The domain of f^{-1} is the range of $f=(-\infty, \infty)$; the range of f^{-1} is the domain of $f=(-2, \infty)$.
17. $f^{\prime}(x)=-2 \sin x+10\left[1+\sin \left(x^{2}\right)\right]^{9} \cos \left(x^{2}\right)(2 x)$
18. (a) $h(5)=g(f(5))=g(2)=4$
(b) $h^{\prime}(2)=g^{\prime}(f(2)) f^{\prime}(2)=g^{\prime}(1)(-1)=2(-1)$
