MATH 151

EXAM \#3A SOLUTIONS

FALL 2001

PART 1

1. If $\theta=\cos ^{-1}(\sqrt{3} / 2)$, then $\cos \theta=\sqrt{3} / 2$ and $\theta=\pi / 6$. Thus,

$$
\tan \left(\cos ^{-1}(\sqrt{3} / 2)\right)=\tan \theta=\tan (\pi / 6)=1 / \sqrt{3} .
$$

The correct answer is (d).
2. Using L'Hopital's rule

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-1}{2 x}=\lim _{x \rightarrow 0}-\frac{1}{2(1+x)}=-\frac{1}{2}
$$

The correct answer is (d).
3. $\frac{d}{d x} \sin ^{-1}(2 / x)=\frac{1}{\sqrt{1-(2 / x)^{2}}}(2 / x)^{\prime}=\frac{1}{\sqrt{1-\frac{4}{x^{2}}}}\left(\frac{-2}{x^{2}}\right)=\frac{1}{\sqrt{1-\frac{4}{x^{2}}}}\left(\frac{-2}{\sqrt{x^{4}}}\right)=-\frac{2}{\sqrt{x^{4}-4 x^{2}}}$.

The correct answer is (a).
4. If $f^{\prime \prime}(x)=4 x+2, f^{\prime}(0)=1$ and $f(0)=-3$, then

$$
\begin{aligned}
f^{\prime}(x) & =2 x^{2}+2 x+1 \\
f(x) & =(2 / 3) x^{3}+x^{2}+x-3 \\
f(3) & =(2 / 3)(3)^{3}+(3)^{2}+3-3=27
\end{aligned}
$$

The correct answer is (e).
5. The Riemann sum R using four equal subintervals with right endpoints is

$$
\begin{aligned}
R & =f(0.5)(0.5-0)+f(1)(1.0-0.5)+f(1.5)(1.5-1.0)+f(2)(2.0-1.5) \\
& =(0.5)(0.5)+(0.2)(0.5)+(0.1)(0.5)+(0.0)(0.5) \\
& =0.4
\end{aligned}
$$

The correct answer is (a).
6. If $y=(1+3 x)^{\cot (x)}$, then

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \cot (x) \ln (1+3 x)=\lim _{x \rightarrow 0} \frac{\ln (1+3 x)}{\tan (x)}=\lim _{x \rightarrow 0} \frac{\frac{3}{1+3 x}}{\sec ^{2}(x)}=\lim _{x \rightarrow 0} \frac{3 \cos ^{2}(x)}{1+3 x}=3
$$

and

$$
\lim _{x \rightarrow 0}(1+3 x)^{\cot (x)}=\lim _{x \rightarrow 0} y=\lim _{x \rightarrow 0} e^{\ln y}=e^{\left(\lim _{x \rightarrow 0} \ln y\right)}=e^{3}
$$

The correct answer is (c).
7. If $f(x)=x^{3}-3 x^{2}$, then $f^{\prime}(x)=3 x^{2}-6 x$ and $f^{\prime \prime}(x)=6 x-6$. Now $f^{\prime}(2)=0$ and $f^{\prime \prime}(2)=6>0$. Thus, f has a relative minimum at $x=2$.

The correct answer is (d).
8. Define $f(x)=x+2 y=x+\frac{100}{x}$ for $x>0$. Then $f^{\prime}(x)=1-\frac{100}{x^{2}}$ and $x=10$ is the only positive critical number for $f(x)$. Now $f^{\prime}(x)<0$ if $0<x<10$ and $f^{\prime}(x)>0$ if $x>10$. The minimum value of $x+2 y$ given that $x y=50$ is $f(10)=10+\frac{100}{10}=20$.
The correct answer is (c).
9. If $\int_{0}^{1} f(x) d x=7$ and $\int_{0}^{1} g(x) d x=2$, then

$$
\int_{0}^{1}[f(x)-4 g(x)] d x=\int_{0}^{1} f(x) d x-4 \int_{0}^{1} g(x) d x=7-4(2)=-1
$$

The correct answer is (c).
10.

$$
\begin{aligned}
F(x) & =\int_{0}^{\sin x} \frac{1}{1+t^{4}} d t \\
F^{\prime}(x) & =\left(\frac{1}{1+(\sin x)^{4}}\right)(\sin x)^{\prime} \\
& =\left(\frac{1}{1+(\sin x)^{4}}\right) \cos x \\
F^{\prime}(\pi / 3) & =\left(\frac{1}{1+(\sin (\pi / 3))^{4}}\right) \cos (\pi / 3) \\
& =\left(\frac{1}{1+(\sqrt{3} / 2)^{4}}\right)(1 / 2)=\frac{8}{25}
\end{aligned}
$$

The correct answer is (d).
11.

$$
\begin{aligned}
y & =x^{\cos x} \\
\ln y & =(\cos x) \ln x \\
\left(\frac{1}{y}\right) y^{\prime} & =(\cos x)(1 / x)+(\ln x)(-\sin x) \\
y^{\prime} & =y\left[-(\ln x)(\sin x)+\frac{\cos x}{x}\right] \\
& =x^{\cos x}\left[-(\ln x)(\sin x)+\frac{\cos x}{x}\right]
\end{aligned}
$$

The correct answer is (b).

PART 2

12. If $y(t)=$ number of bacteria at time t, then

$$
\begin{aligned}
y^{\prime}(t) & =k y(t) \\
y(0) & =10^{8}
\end{aligned}
$$

The solution is $y(t)=y(0) e^{k t}=10^{8} e^{k t}$.
(a) When $t=10$,

$$
\begin{aligned}
10^{8} e^{10 k} & =y(10)=1.03 \times 10^{8} \\
e^{10 k} & =1.03 \\
10 k & =\ln 1.03 \\
k & =\frac{1}{10} \ln 1.03
\end{aligned}
$$

(b) The population has doubled its size when

$$
\begin{aligned}
y(t) & =10^{8} e^{k t}=2 \times 10^{8} \\
e^{k t} & =2 \\
k t & =\ln 2 \\
t & =\frac{\ln 2}{k}=10\left(\frac{\ln 2}{\ln 1.03}\right) \text { minutes }
\end{aligned}
$$

13. If $g(x)=x^{3}-3 x^{2}-9 x$, then $g^{\prime}(x)=3 x^{2}-6 x-9$. The critical numbers of $g(x)$ solve

$$
\begin{array}{r}
g^{\prime}(x)=0 \\
3 x^{2}-6 x-9=0 \\
3(x-3)(x+1)=0
\end{array}
$$

The solutions are $x=-1$ and $x=3$. Now

$$
\begin{aligned}
g(-2) & =(-2)^{3}-3(-2)^{2}-9(-2)=-2 \\
g(-1) & =(-1)^{3}-3(-1)^{2}-9(-1)=5 \\
g(3) & =(3)^{3}-3(3)^{2}-9(3)=-27 \\
g(4) & =(4)^{3}-3(4)^{2}-9(4)=-20
\end{aligned}
$$

The function $g(x)=x^{3}-3 x^{2}-9 x$ has an absolute maximum value of 5 on $[-2,4]$.
14. If $f(x)=e^{-2 x} \tan ^{-1}(\ln x)$, then

$$
\begin{aligned}
f^{\prime}(x) & =e^{-2 x}\left(\tan ^{-1}(\ln x)\right)^{\prime}+\left(e^{-2 x}\right)^{\prime} \tan ^{-1}(\ln x) \\
& =e^{-2 x}\left(\frac{1}{1+(\ln x)^{2}}\right)(\ln x)^{\prime}-2 e^{-2 x} \tan ^{-1}(\ln x) \\
& =\left[e^{-2 x}\left(\frac{1}{1+(\ln x)^{2}}\right) \frac{1}{x}\right]-2 e^{-2 x} \tan ^{-1}(\ln x)
\end{aligned}
$$

15. If $g(x)=\frac{1}{4} x^{4}-\frac{1}{6} x^{6}$, then
(a) $g^{\prime}(x)=x^{3}-x^{5}=x^{3}\left(1-x^{2}\right)$ and $g^{\prime}(x)>0$ on $(-\infty,-1) \cup(0,1)$ and $g^{\prime}(x)<0$ on $(-1,0) \cup(1, \infty)$. The graph of $g(x)$ is increasing on $(-\infty,-1) \cup(0,1)$ and decreasing on $(-1,0) \cup(1, \infty)$.
(b) $g^{\prime \prime}(x)=3 x^{2}-5 x^{4}=x^{2}\left(3-5 x^{2}\right)$ and $g^{\prime \prime}(x)>0$ on $(-\sqrt{3 / 5}, \sqrt{3 / 5})$ and $g^{\prime \prime}(x)<0$ on $(-\infty,-\sqrt{3 / 5}) \cup(\sqrt{3 / 5}, \infty)$. The graph of $g(x)$ is concave up on $(-\sqrt{3 / 5}, \sqrt{3 / 5})$ and concave down on $(-\infty,-\sqrt{3 / 5}) \cup(\sqrt{3 / 5}, \infty)$.
16. (a) $F(x)=e^{x}$ is an antiderivative of $f(x)=e^{x}$. Then

$$
\int_{\ln 2}^{\ln 9} e^{x} d x=\left.F(x)\right|_{\ln 2} ^{\ln 9}=F(\ln 9)-F(\ln 2)=e^{\ln 9}-e^{\ln 2}=9-2=7
$$

(b) $F(x)=x+\ln x$ is an antiderivative of $f(x)=\frac{x+1}{x}=1+\frac{1}{x}$. Then

$$
\int_{2}^{5} \frac{x+1}{x} d x=\left.F(x)\right|_{2} ^{5}=F(5)-F(2)=(5+\ln 5)-(2+\ln 2)=3+\ln (5 / 2)
$$

17. If a square with side x ft is cut out from each of the four corners, the volume of the box formed by bending up the sides is

$$
V(x)=x(6-2 x)^{2}
$$

for $0<x<3$. Now

$$
V^{\prime}(x)=-4 x(6-2 x)+(6-2 x)^{2}=(6-2 x)(6-6 x)=12(3-x)(1-x)
$$

and the critical values for $V(x)$ are $x=1$ and $x=3$. Only $x=1$ is in the region $0<x<3$.
Now $V^{\prime}(x)>0$ if $0<x<1$ and $V^{\prime}(x)<0$ if $1<x<3$. Consequently, the maximum volume occurs when $x=1$ and the resulting volume is $V(1)=1(6-2(1))^{2}=16$.
18. Let $s(t)=$ the position of the car at time t and $v(t)=$ the velocity of the car at time t. Then

$$
\begin{aligned}
v^{\prime}(t) & =-36 \\
v(t) & =-36 t+v(0)
\end{aligned}
$$

and the car comes to rest when

$$
\begin{aligned}
v(t) & =0 \\
-36 t+v(0) & =0 \\
t & =\frac{v(0)}{36} \text { seconds }
\end{aligned}
$$

Now

$$
\begin{aligned}
s^{\prime}(t) & =v(t)=-36 t+v(0) \\
s(t) & =-18 t^{2}+v(0) t+s(0)
\end{aligned}
$$

and the distance traveled by the car during the skid was $s(v(0) / 36)-s(0)=112.5 \mathrm{ft}$. Thus,

$$
\begin{aligned}
s(v(0) / 36)-s(0) & =-18\left(\frac{v(0)}{36}\right)^{2}+v(0)\left(\frac{v(0)}{36}\right) \\
112.5 & =\frac{(v(0))^{2}}{72} \\
v(0) & =90 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

