Finding Inverse Functions

How to find the inverse of a one-to-one function $f(x)$:

You are given $\mathrm{f}(\mathrm{x})=$ blah, blah, blah

1. Write $y=f(x)$
2. Solve the equation for x in terms of y (this is not always possible).
3. Switch the x and y.
4. The result is $y=f^{-1}(x)$

IMPORTANT: Notice that $f(x)=x^{2}$ is NOT a one-to-one function $\rightarrow f(2)=f(-2)=4$. However if you restrict its domain to say $\mathrm{x} \geq 0$ then you can 'pretend' it is.

Example:

Given $f(x)=x^{5}-3$ find $f^{-1}(x)$

1. Write $y=f(x): \quad y=x^{5}-3$
2. Solve for $x: \quad y+3=x^{2}$

$$
x^{5}=y+3
$$

$$
x=\sqrt[5]{y+3}
$$

3. Switch x and $\mathrm{y}: \quad \mathrm{y}=\sqrt[5]{x+3}$
4. Result is $\mathrm{y}=\mathrm{f}^{-1}(\mathrm{x}): \quad \mathrm{f}^{-1}(\mathrm{x})=\sqrt[5]{x+3}$

So the inverse of $x^{5}-3$ is $\sqrt[5]{x+3}$

